Effectiveness of Seasonal Influenza Vaccine against Pandemic (H1N1) 2009 Virus. Part 2

The need for rapid implementation of programs results in initial studies using immunogenicity, rather than efficacy, to assess performance of influenza vaccines. After 1 dose of monovalent pandemic (H1N1) 2009 vaccine containing 15 μg hemagglutinin without adjuvant, seroprotection was estimated to be 94%–97% in working-age adults and 75% in children. Observational studies provide a practical way to calculate vaccine effectiveness under field conditions. Effectiveness of monovalent pandemic (H1N1) 2009 was estimated to be 72%–97% by 3 studies in general practice and community-based settings in Europe, 90% in a hospital-based study in Spain, and 100% in a community-based study of children in Canada. These studies were conducted in populations for which the respective local or national pandemic vaccination program primarily used vaccine without adjuvant.

We assessed effectiveness of the 2010 seasonal influenza vaccine against laboratory-confirmed pandemic (H1N1) 2009 influenza infection in Victoria, Australia. Data came from an established test-negative case–control study in a general practitioner sentinel surveillance network.

Methods

Sentinel Surveillance
Victoria is the second most populous state in Australia; it has a temperate climate, and the annual influenza season usually occurs during May–September. Each season, on behalf of the Victorian Government Department of Health, the Victorian Infectious Diseases Reference Laboratory conducts surveillance for influenza-like illness (ILI; defined as history of fever, cough, and fatigue/malaise) and laboratory-confirmed influenza. General practitioners within the network provide weekly reports on case-patients with ILI as a proportion of total patients seen and send swabs from patients with ILI to the laboratory for testing. In 2010, a total of 87 practitioners participated in the program, which operated for 25 weeks, from May 3 (week 19) through October 24 (week 43). Practitioners were asked to collect nose and throat swabs from patients with an ILI within 4 days after onset of the patient’s symptoms. Samples were collected by using Copan dry swabs (Copan Italia, Brescia, Italy) and were placed in virus transport medium. Practitioners were also asked to provide data on the patient’s age, sex, date of symptom onset, vaccination status, type of influenza vaccine (monovalent or trivalent/seasonal) received, and date of vaccination. Type of vaccine and date of vaccination were ascertained from medical records and patient report.

Laboratory Testing
RNA was extracted from clinical specimens by using a Corbett extraction robot (Corbett Robotics, Brisbane, Australia), followed by reverse transcription to cDNA by using random hexamers. PCR amplification and detection selective for the type A influenza virus matrix gene was performed by using primers and a Taqman probe on an ABI-7500 Fast Real-Time PCR system (Applied Biosystems, Foster City, CA, USA). Samples determined to be positive by this assay were confirmed as positive or negative for pandemic (H1N1) 2009 in a second real-time PCR that incorporated primers and probes specific for the hemagglutinin gene of the pandemic (H1N1) 2009 virus. Influenza B viruses were identified by a separate PCR. One practitioner chose to send samples to the state reference laboratory in South Australia for testing with equivalent diagnostic assays.