Effectiveness of Seasonal Influenza Vaccine against Pandemic (H1N1) 2009 Virus. Ethical Considerations

Data in this study were collected, used and reported under the legislative authorization of the Victorian Public Health and Wellbeing Act 2008 and Public Health and Wellbeing Regulations 2009. Thus, the study did not require Human Research Ethics Committee approval.

Results
A total of 172,411 patients were seen by participating practitioners during the study period, of whom 678 (0.4%) had ILI. After a nadir ILI rate of 0.2% in week 21, the rate gradually increased to 0.4% in week 31 before increasing more sharply to a peak of 0.9% in week 36. Swabs were collected from 478 (71%) ILI patients, among whom 170 (36%) had positive influenza test results and the remainder were negative. Influenza-positive patients were detected during weeks 26–40, which was defined as the influenza season (Figure). A total of 142 patients were excluded from further analysis because vaccination status was unknown (n = 11), symptom onset date was unknown (n = 33), time between symptom onset and specimen collection was >4 days (n = 43), or the specimen was collected outside the influenza season (n = 82). A significantly higher proportion of influenza-negative patients (13%) than influenza-positive patients (4%) were excluded because >4 days had elapsed between symptom onset and specimen collection (p = 0.001). No significant difference was found by age group for whether study participants had a specimen collected within 4 days after symptom onset (p = 0.10).

Of the remaining 336 patients, 156 (46%) had positive influenza test results. Most (89%) influenza case-patients had pandemic (H1N1) 2009, 6% had unspecified type A influenza, 4% had influenza A (H3N2), and 1% had influenza type B (Figure). After exclusion of the other influenza patients, 139 pandemic (H1N1) 2009 case-patients and 180 controls were included in the study analysis. Most (57%) participants were 20–49 years of age, and case-patients were significantly younger than controls (p = 0.001); no case-patient was >65 years of age (Table 1). No statistically significant difference was found between male and female study participants by case or control status (p = 0.60) or by vaccination status (p = 0.09). The high proportion of case-patients detected in August resulted in a significant difference between case-patients and controls by month of swab collection (p<0.001). Overall, 59 (18%) study participants were reported as vaccinated with any vaccine, but the proportion was higher among controls (26%) than among case-patients (9%; p<0.001). The proportion of controls, who were mostly older, who had received the trivalent seasonal vaccine was higher than the proportion of controls who had received the monovalent vaccine (Table 1). Similarly, controls who had received both vaccines were all >20 years of age. Only case-patients who were 5–19 and 20–49 years of age were reported as vaccinated. Influenza vaccine type was not specified for 1 case-patient and 1 control, each of whom was reported as vaccinated.

Reflecting the availability of each vaccine, the median period between vaccination and visit to a general practitioner was significantly shorter for those who received seasonal vaccine (114 days) than for those who received monovalent vaccine (223 days; p<0.0001). No significant difference in the time from vaccination to practitioner visit was found between case-patients and controls for seasonal (p = 0.70) or monovalent vaccine (p = 0.95).