Biochemical prevention and treatment of viral infections

For two centuries, vaccination has been the dominating approach to develop prophylaxis against viral infections through immunological prevention. However, vaccines are not always possible to make, are ineffective for many viral infections, and also carry certain risk for a small, yet significant portion of the population. In the recent years, FDA’s approval and subsequent market acceptance of Synagis, a monoclonal antibody indicated for prevention and treatment of respiratory syncytial virus (RSV) has heralded a new era for viral infection prevention and treatment. This emerging paradigm, herein designated “Biochemical Prevention and Treatment”, currently involves two aspects: (1) preventing viral entry via passive transfer of specific protein-based anti-viral molecules or host cell receptor blockers; (2) inhibiting viral amplification by targeting the viral mRNA with anti-sense DNA, ribozyme, or RNA interference (RNAi). This article summarizes the current status of this field.

Introduction

A landmark in the battle against viral infectious diseases was made in 1798 when Jenner first inoculated humans against smallpox with the less virulent cowpox. For about two centuries since then, humans relied almost exclusively on vaccines for protection against viruses. Only in the recent years, new strategies for controlling viral infectious diseases have emerged, which have so far led to a couple of viral prophylaxis/therapeutics on the market. These strategies are fundamentally different from vaccines in that they attempt to directly interrupt viral infectious life cycle at molecular level by using proteins or oligonucleotides. To differentiate them from the conventional vaccines that prevent viral infection by boosting immune system, we refer the new antiviral approaches as “Biochemical Prevention and Treatment” (see figure 1). Biochemical Prevention and Treatment, as an alternative to vaccines and chemical compound based antiviral drugs, may prove to be particularly valuable in the areas where vaccines and/or chemical drugs can not be generated or have not been successful in human, including diseases caused by some common pathogenic viruses, such as HIV, hepatitis C virus (HCV), RSV and human rhinovirus (HRV). In this review, we will discuss various molecular intervention approaches.

1. Biochemical Prevention and Treatment via Protein targeting

Among the biochemical therapeutics currently in clinical trials, the majority consists of monoclonal antibodies (MAbs). Soluble receptor drug candidates have gradually lost favor over the past several years due to issues relating to low potency and cost. Peptide-based drug candidates are limited by insufficient efficacy and unfavorable pharmacokinetics. MAbs have increasingly gained favor in large part because of the development of chimeric, humanized, and human antibodies have reduced the immunogenicity of antibody therapies.